Working with Triggers in a MySQL Database - A Tutorial
Traducciones al EspañolEstamos traduciendo nuestros guías y tutoriales al Español. Es posible que usted esté viendo una traducción generada automáticamente. Estamos trabajando con traductores profesionales para verificar las traducciones de nuestro sitio web. Este proyecto es un trabajo en curso.
A trigger is a pre-defined SQL command that is automatically executed when specific actions occur in the database. It can be fired either before or after an INSERT
, UPDATE
, or DELETE
event.
Triggers are mainly used to maintain software logic in the MySQL server, and they have several benefits:
Triggers help keep global operations centralized in one location.
They reduce client-side code and help minimize the round-trips made to the database server.
They help make applications more scalable across different platforms.
Some common use-cases of triggers include audit logging, pre-computing database values (e.g. cumulative sums), and enforcing complex data integrity and validation rules.
In this guide, you will learn:
How the syntax for a trigger is structured.
How to create triggers that are executed before other database events occur.
How to create triggers that are executed after other database events occur.
Before You Begin
If you have not already done so, create a Linode account and Compute Instance. See our Getting Started with Linode and Creating a Compute Instance guides.
Follow our Setting Up and Securing a Compute Instance guide to update your system. You may also wish to set the timezone, configure your hostname, create a limited user account, and harden SSH access.
A MySQL server and client installed on the Linode server. Installation guides for MySQL are available for different distributions in our MySQL section.
Prepare the Database
To better understand how triggers work, we will create a sample database and add sample data into it. Later, we will create different triggers on the database as a proof of concept exercise.
First, log in to your MySQL Server:
mysql -u root -p
Then, enter the root password of your MySQL server and hit Enter to proceed.
Next, you will see a MySQL prompt similar to the one shown below:
mysql >
Create a
test_database
by running the command below:CREATE DATABASE test_database;
Output:
Query OK, 1 row affected (0.02 sec)
Switch to the database:
USE test_database;
Output:
Database changed
Once the database is selected, we will create some tables that we will use for demonstrating triggers. We will begin by creating the
stores
table. This table will hold information about two sample stores/offices where our hypothetical business operates from:CREATE TABLE stores ( store_id BIGINT PRIMARY KEY AUTO_INCREMENT, store_name VARCHAR(50) ) ENGINE=InnoDB;
Output:
Query OK, 0 rows affected (0.07 sec)
Next, add two records to the
stores
table by running the commands below:INSERT INTO stores (store_name) VALUES ('Philadelphia'); INSERT INTO stores (store_name) VALUES ('Galloway');
After each command, you will get the below output:
Query OK, 1 row affected (0.08 sec) ...
Confirm the records by running the command below:
SELECT * FROM stores;
Output:
+----------+--------------+ | store_id | store_name | +----------+--------------+ | 1 | Philadelphia | | 2 | Galloway | +----------+--------------+ 2 rows in set (0.01 sec)
Next, create the
products
table. The table will hold different products being offered in the store:CREATE TABLE products ( product_id BIGINT PRIMARY KEY AUTO_INCREMENT, product_name VARCHAR(40), cost_price DOUBLE, retail_price DOUBLE, availability VARCHAR(5) ) ENGINE=InnoDB;
Output:
Query OK, 0 rows affected (0.13 sec)
Each product will be uniquely identified by a
product_id
.A
product_name
field will specify the names of the items.The
cost_price
andretail_price
fields will determine the buying and selling price respectively.An
availability
column will define the product availability in the different stores. If the product is only available in our local store (Philadelphia), we will denote it with aLOCAL
value. Else, we will use the value ofALL
to signify a product that is available in both stores (Philadelphia and Galloway).
Add sample data to the
products
table:INSERT INTO products (product_name, cost_price, retail_price, availability) VALUES ('WIRELESS MOUSE', '18.23', '30.25','ALL'); INSERT INTO products (product_name, cost_price, retail_price, availability) VALUES ('8 MP CAMERA', '60.40', '85.40','ALL'); INSERT INTO products (product_name, cost_price, retail_price, availability) VALUES ('SMART WATCH', '189.60', '225.30','LOCAL');
You will get the output shown below after each insert command:
Query OK, 1 row affected (0.02 sec) ...
Confirm if the products were inserted by running the command below:
SELECT * FROM products;
Output:
+------------+----------------+------------+--------------+--------------+ | product_id | product_name | cost_price | retail_price | availability | +------------+----------------+------------+--------------+--------------+ | 1 | WIRELESS MOUSE | 18.23 | 30.25 | ALL | | 2 | 8 MP CAMERA | 60.4 | 85.4 | ALL | | 3 | SMART WATCH | 189.6 | 225.3 | LOCAL | +------------+----------------+------------+--------------+--------------+ 3 rows in set (0.00 sec)
Next, the products’ availability will be mapped to another table named
products_to_stores
. This table will just reference theproduct_id
from theproducts
table and thestore_id
from thestores
table where the item is available.Create the
products_to_stores
table by running the code below:CREATE TABLE products_to_stores ( ref_id BIGINT PRIMARY KEY AUTO_INCREMENT, product_id BIGINT, store_id BIGINT ) ENGINE=InnoDB;
Output:
Query OK, 0 rows affected (0.14 sec)
Next, we will create an
archived_products
table. The table will hold information about deleted products for future reference:CREATE TABLE archived_products ( product_id BIGINT PRIMARY KEY , product_name VARCHAR(40), cost_price DOUBLE, retail_price DOUBLE, availability VARCHAR(5) ) ENGINE=InnoDB;
Output:
Query OK, 0 rows affected (0.14 sec)
Lastly, we will create a
products_price_history
table for tracking the different prices of each product over time:CREATE TABLE products_price_history ( product_id BIGINT PRIMARY KEY AUTO_INCREMENT, price_date DATETIME, retail_price DOUBLE ) ENGINE=InnoDB;
Output:
Query OK, 0 rows affected (0.14 sec)
Once our database structure is in place, we can now go ahead and learn the basic syntax of a MySQL database trigger in order to create our first sample.
Trigger Syntax
As indicated earlier, triggers are fired automatically either before or after an SQL command is run in the database. The basic syntax for creating triggers is as follows:
CREATE TRIGGER TRIGGER_NAME
TRIGGER_TIME TRIGGER_EVENT
ON TABLE_NAME FOR EACH ROW
[TRIGGER BODY];
TRIGGER_NAME
: Each trigger must have a unique name and you should define it here.TRIGGER_TIME
: EitherBEFORE
orAFTER
.TRIGGER_EVENT
: You need to specify the database event that will invoke the trigger:INSERT
,UPDATE
, orDELETE
.TRIGGER BODY
: This specifies the actual SQL command (or commands) that you want to be run by your trigger.
If a trigger body has more than one SQL statement, you must enclose it within a BEGIN...END
block. As well, you will need to temporarily change the DELIMITER
that signals the end of the trigger body to a new value. This ensures that the statements within the body are not prematurely interpreted by your MySQL client. An example of this looks like the following:
DELIMITER &&
CREATE TRIGGER TRIGGER_NAME
TRIGGER_TIME TRIGGER_EVENT
ON TABLE_NAME FOR EACH ROW
BEGIN
[TRIGGER BODY]
END &&
DELIMITER ;
NoteThe last line of this example changes theDELIMITER
back to the default;
value.
Creating Before Event Triggers
In this section, we will look into the different types of triggers that are fired before a database operation. These include the BEFORE INSERT
, BEFORE UPDATE
, and BEFORE DELETE
triggers.
Creating a Before Insert Trigger
We will create our first BEFORE INSERT
trigger. The trigger will make sure that the retail price of a product is greater than the cost price whenever items are inserted into the products
table. Otherwise, the database user will get an error.
While still on the
mysql >
prompt, enter the command below:DELIMITER $$ CREATE TRIGGER price_validator BEFORE INSERT ON products FOR EACH ROW IF NEW.cost_price>=NEW.retail_price THEN SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = 'Retail price must be greater than cost price.'; END IF $$ DELIMITER ;
The above code defines the trigger name (
price_validator
), time (BEFORE
), event (INSERT
), and the table (products
) to be affected.Our trigger uses the
NEW
keyword to check thecost_price
andretail_price
before a record is inserted to theproducts
table, using theIF...THEN...END IF
statement.If the
cost_price
is greater or equal to theretail price
, our triggers tells MySQL to throw a custom exception instructing the user to rectify the error.
To test the trigger above, try inserting a product that violates the validation rule:
INSERT INTO products (product_name, cost_price, retail_price, availability) VALUES ('GAMING MOUSE PAD', '145.00', '144.00','LOCAL');
Output:
ERROR 1644 (45000): Retail price must be greater than cost price.
The above insert commands should fail because the
retail_price
(144.00) is not greater than thecost_price
(145.00).
Creating a Before Update Trigger
Next, we will create a BEFORE UPDATE
trigger. This trigger will prevent database users from editing a product name once a product has been inserted into the database. If you have multiple users working in the database, a BEFORE UPDATE
trigger may be used to make values read-only, and this can prevent malicious or careless users from modifying records unnecessarily.
Create a new
product_name_validator
trigger with the command below:DELIMITER $$ CREATE TRIGGER product_name_validator BEFORE UPDATE ON products FOR EACH ROW IF NEW.product_name<>OLD.product_name THEN SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = 'Product name is read-only and it can not be changed.'; END IF $$ DELIMITER ;
This trigger compares the values of the new
product_name
(NEW.product_name
) and the old name already in the database (OLD.product_name
). If there is a mismatch, an exception is thrown.To invoke the
product_name_validator
trigger, we can attempt to update the name of the product with the ID1
:UPDATE products SET product_name='WIRELESS BLUETOOTH MOUSE' WHERE product_id='1';
Output:
ERROR 1644 (45000): Product name is read-only and it can not be changed.
Defining a Before Delete Trigger
In this section, you will see how you can define a BEFORE DELETE
trigger to prevent users from deleting specific records from a table.
To create the
prevent_delete
trigger, run the command below:DELIMITER $$ CREATE TRIGGER prevent_delete BEFORE DELETE ON products FOR EACH ROW IF OLD.availability='ALL' THEN SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = 'The product can not be deleted because it is available in ALL stores.'; END IF $$ DELIMITER ;
This trigger will prevent products marked with a value of
ALL
in the availability column from being deleted.Next, try to delete the first product from the products table and see if the trigger will be invoked:
DELETE FROM products WHERE product_id='1';
Output:
ERROR 1644 (45000): The product can not be deleted because it is available in ALL stores.
We have looked at the different triggers that are invoked before a database operation. Next, we will look into the other types of triggers that are fired after database events.
Creating After Event Triggers
In a production environment, you may want some triggers to be automatically executed after a database event occurs (for example, inserting records into different tables). The examples below demonstrate how these kinds of triggers can be used in our sample database.
Creating an After Insert Trigger
This example creates a trigger named product_availability
that inserts mapping records into the products_to_stores
table. This trigger is used to enforce business logic; in particular, it helps define the product availability for the different stores.
Run the code below to create the
product_availability
trigger. Since we have multiple lines of code in the trigger body, we will use aBEGIN...END
block:DELIMITER $$ CREATE TRIGGER product_availability AFTER INSERT ON products FOR EACH ROW BEGIN IF NEW.availability='LOCAL' then INSERT INTO products_to_stores (product_id, store_id) VALUES (NEW.product_id, '1'); ELSE INSERT INTO products_to_stores (product_id, store_id) VALUES (NEW.product_id, '1'); INSERT INTO products_to_stores (product_id, store_id) VALUES (NEW.product_id, '2'); END IF; END $$ DELIMITER ;
When an item is being inserted into the
products
table, the trigger will check theavailability
field.If it is marked with the
LOCAL
value, the product will be made available in one store only.Any other value will instruct the trigger to make the product available to the two stores that we created earlier.
To see the
product_availability
trigger in action, insert the two records to the products table:INSERT INTO products (product_name, cost_price, retail_price, availability) VALUES ('BLUETOOTH KEYBOARD', '17.60', '23.30','LOCAL'); INSERT INTO products (product_name, cost_price, retail_price, availability) VALUES ('DVB-T2 RECEIVE', '49.80', '53.40','ALL');
Then, query the
products_to_stores
table:SELECT * FROM products_to_stores;
You should see an output similar to the one shown below:
+--------+------------+----------+ | ref_id | product_id | store_id | +--------+------------+----------+ | 1 | 4 | 1 | | 2 | 5 | 1 | | 3 | 5 | 2 | +--------+------------+----------+ 3 rows in set (0.00 sec)
Defining an After Update Trigger
A trigger can also be fired after an UPDATE
event. We will see how we can leverage this type of trigger to keep track of price changes in our store over time.
Create a
product_history_updater
trigger by running the command below:CREATE TRIGGER product_history_updater AFTER UPDATE ON products FOR EACH ROW INSERT INTO products_price_history (product_id, price_date, retail_price) VALUES (OLD.product_id, NOW(), NEW.retail_price);
This trigger records changes to a product’s
retail_price
in theproducts_price_history
table.Note
Unlike previous examples, this trigger only has one statement in the trigger’s body, so we do not need to change theDELIMITER
.Then, try updating the price of the first product by running the command below:
UPDATE products SET retail_price='36.75' WHERE product_id='1';
Next, query the
products_price_history
table to see if the price change was logged:SELECT * FROM products_price_history;
If the trigger worked as expected, you should get the below output:
+------------+---------------------+--------------+ | product_id | price_date | retail_price | +------------+---------------------+--------------+ | 1 | 2020-01-28 11:46:21 | 36.75 | +------------+---------------------+--------------+ 1 row in set (0.00 sec)
Creating an After Delete Trigger
In some cases, you might want to log delete operations after a specific action has occurred in the database. You can achieve this by using the AFTER DELETE
trigger.
Create a new the
product_archiver
trigger with the command below:CREATE TRIGGER product_archiver AFTER DELETE ON products FOR EACH ROW INSERT INTO archived_products (product_id, product_name, cost_price, retail_price, availability) VALUES (OLD.product_id, OLD.product_name, OLD.cost_price, OLD.retail_price, OLD.availability);
This trigger archives deleted products in a separate table named
archived_products
. When an item is deleted from the mainproducts
table, our trigger will automatically log it to thearchived_products
table for future reference.Next, delete a product from the
products
table and see if the trigger will be invoked:DELETE FROM products WHERE product_id='3';
Now, if you check the
archived_products
table, you should see one record:SELECT * FROM archived_products;
Output:
+------------+--------------+------------+--------------+--------------+ | product_id | product_name | cost_price | retail_price | availability | +------------+--------------+------------+--------------+--------------+ | 3 | SMART WATCH | 189.6 | 225.3 | LOCAL | +------------+--------------+------------+--------------+--------------+ 1 row in set (0.00 sec)
Deleting a Trigger
You have seen the different types of triggers and how they can be used in a production environment. Sometimes, you may want to remove a trigger from the database.
You can delete a trigger if you don’t want to use it anymore using the syntax below:
DROP TRIGGER IF EXISTS TRIGGER_NAME;
NoteTheIF EXISTS
keyword is an optional parameters that only deletes a trigger if it exists.
For example, to delete the product_archiving
trigger that we defined above, use the below command:
DROP TRIGGER IF EXISTS product_archiver;
Output:
Query OK, 0 rows affected (0.00 sec)
CautionBe cautious when deleting tables associated with triggers. Once a table is dropped from the MySQL database, the related triggers are also automatically deleted.
More Information
You may wish to consult the following resources for additional information on this topic. While these are provided in the hope that they will be useful, please note that we cannot vouch for the accuracy or timeliness of externally hosted materials.
This page was originally published on